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Abstract

The Autovibron DDV-IIIC (IMASS, Inc.) is a forced vibration unit capable

of operating at several constant frequencies for the determination of

the dynamic mechanical response of a system. The automation provides a

programmed heating rate, continuous sample tensioning, and acquisition

and reduction of data. Problems have been encountered with sample align-

ment, tension adjustment and the measurement at low tan 6 values. Re-

sults obtained at several frequencies using the Autovibron for MBS-

modified and unmodified PVC samples and a commercially av ilable mineral-

reinforced nylon composite (Minlon 12T, Dupont) are reported. It is

concluded that this instrument has good potential for the convienent

determination of dynamic spectra of polymers and their composites.
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Dynamic Mechanical Spectroscopy Using the Autovibron (DDV-III-C)

S. M. WEBLER, J. A. MANSON, AND R. W. LANG
Materials Research Center, Lehigh University
Bethlehem, PA 18015

In determining the dynamic mechanical response of a system, it is

often desirable to work with a forced-vibration instrument at a constant

frequency. One of the instruments most commonly used for this purpose

has been the direct-reading viscoelastometer originally developed by

Takayanagi (1,2) - the Rheovibron. A common model has been the model

DDV-II (load capacity, 0.l-kgf); in recent years a 5-kgf-capacity model,

the DDV-III-C, has been introduced (3,4).

While much valuable research has been based on results obtained using

such units, several problems have been recognized. Thus the operator

must give constant attention to the instrument over a period of 4 hr or

more; also, maintenance of proper tension on the specimen is often far

from easy. Other limitations include difficulty in working at T > Tg,

and undesirably low ranges in tan 6 and frequency. More detailed dis-

cussions are given by Yee and Takemori (5) and by Kenyon et al. (6).

To remedy or alleviate some of these problems, Yee and Takemori (5)

modified and improved the Rheovibron model DDV-II-B by providing closed-

loop control, and by improving and simplifying the technique used to de-

termine the loss tangent and the storage modulus. Gains in accuracy,

simplicity of operation, and adaptability to digital processing of the

data were reported. The Rheovibron itself has been automated by the



manufacturer (3); Kenyon et al. (6) also automated the Rheovibron DDV-IJ

to provide automatic control of tension, increased sensitivity, and cal-

culation and printout of E', E", and tan 6. The latter unit has been

commercialized by Imass, Inc. (4) as the Autovibron, model DDV-II-C.

Recently a generally similar adaptation has been introduced, based on the

hydraulically operated Rheovibron DDV-III-C. Automation of a resonance-type

(7) and a different constant frequency instrument(8) have also been described.

While a full critical analysis of the operation of the Autovibron

DDV-III-C has not yet been possible, it is appropriate to describe our

experience with this new instrument, and to make preliminary recommenda-

tions with respect to operation and future improvement. Since the instru-

ment is the first of its type, the observations reported should be helpful

to other investigators. Results obtained in our laboratory using an auto-

mated DDV-II are also described for comparison.

INSTRUMENTATION

As mentioned above, the model DDV-III-C Rheovibron (Toyo Baldwin Co.)

has been combined with an automation package supplied by Imass, Inc. The

instrument maintains the essential characteristics of the Rheovibron DDV-

III-C, utilizing the original sample bench, hydraulic system, load cell,

and basic electronics. Four fixed frequencies - 3.5, 11, 35 and 110 Hz -

are available. Sample sizes up to 7cm x 1cm x 5mm can be handled, with

a claimed range for complex Young's modulus between 1 MPa and lOOGPa (lGPa=

IGN/m 2=100 dynes/cm 2). A low-temperature chamber allows measurements

to be taken from -1400C to %175 C. with a programmed rate of temperature

increase of l0 C/min. A second chamber is provided for temperatures up

to \30 0°C. The automation package is responsible for sample tensioning,

phase angle measurements, temperature control, data acquisition and data

2



reduction. The key components of this package are a lock-in analyzer

(Princeton Applied Research, Model 5204), a programmable calculator

(Hewlett Packard Model 9825A), a multiprogramer (Hewlett Packard Model

6940B), and an optional plotter (Hewlett Packard Model 98723). The auto-

mation package can also be readily interfaced with a Rheovibron Model

DDV-II. The essential differences in the two units are the driving unit

and the load capacity. The hydraulic driving system of the DDV-III is

replaced by an electro-mechanical driver in the smaller unit. The DDV-

II is capable of handling sample sizes up to 5cm x 0.05cm x 0.4cm (Fig.

1 shows a comparison of sample sizes for the two models) with a maximum

load capacity of O.lkgf and modulus range of 100KPa to 100GPa. A schema

is given in Figure 2.

Temperature programming is effected through the calculator in con-

junction with a platinum resistance thermometer. From -140 0C to -450 C

the temperature is allowed to increase without regulation at a rate of ,I*C/

min. At -450C, power is supplied to the heaters and the temperature is

controlled by programming the application of power. The temperature use

can also be controlled at rates other than 1C/min. through changes in

the operating program. For temperatures above 175 0C, the high-tempera-

ture chamber must be used.

Phase-angle measurements using the lock-in analyzer were incorporated

to simplify automation of the measurements, improve resolution of small

angles, and increase the range of tan 6 measurements (4). The calculator

alternately switches the load (P) and displacement X) signal through the

multiprogramler to the lock-in analyzer. After a programmed delay for

setting of the signal, the in-phase and quadrature components of the re-

spective signals are measured with respect to a reference signal from th=

Autovibron. The complex Young's modulus, E*, is calculated using Equaticn 1.

i . p .i-,. I I ! I I II -- II I I I I I . . .. [ 2



E* (P2 +P2 1/2 L2
E*I (P+Q) (1)

2 2 1/2
(XI + XQ) V

The subscripts I and Q designate the in-phase and quadrature components

of the respective signals, R is a ranging and scaling factor , L is the

sample length and V is the original sample volume. The phase difference,

6 is calculated using Equation 2.

x
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P x
arctan P Q  - arctan La (2)

1 2 PI XI

•With E* and 6 from Equations I and 2, respectively, the storage modulus,

E', and loss modulus, E", can be calculated.

E' =IE*/cos 6 (3)

E" -/E*/sin 6 (4)

tan6 = E"/E' (5)

The data acquired are displayed while the program is running and stored

on magnetic-tape cartridges for further reduction. Results can be printed

or plotted during the run with appropriate programming; programs for data

reduction and plotting from tape are available.

EXPERIMENTAL

Problems and their correction. During start-up and subsequent trials

using the DDV-III-C, several significant problems have been encountered.

Much of our recent work has been conducted using an automated DDV-II be-

cause of problems with the DDV-III. Preliminary work with the large load

capacity unit has shown problems in sample tensioning, load control, measure-

ment of small phase angles and programming. These deficiencies are dis-

cussed below.

Sample tension is controlled by the calculator through the multi-

programmer and a stepping-motor that moves the load arm. The original

stepping-motor assembly used springs to control tension and resulted in

enough lateral motion to preclude maintenance of alignment. Such align-

ment is of critical importance, for otherwise serious errors in modulus



and damping can result. A combination of shims to align the center ef

the load-arm with the center of the driver and a new screw-driven step-

ping-motor assembly (redesigned by Imass, Inc.) have minimized lateral

motion. However, even with the modification mentioned, great care must

still be taken with clamping and alignment of the specimen. Also, bowing

in the sample can be introduced by non-uniform tightening of the grips.

Some scatter may also be due to an inherent design problem; the manu-

factures is currently revising the signal reading section. As was the

case with the Autovibron DDV-II(6), sample mounting and alignment are two

major flaws of the instrument. Reproducible methods for sample mounting

have been reported recently for the DDV-II(9); similar modifications

should be included in further redesign of the DDV-III system.

The original software calculated the DC voltage of the load signal

by sampling the sine wave, calculating the amplitude, and dividing by two

to obtain the DC bias. Because of problems in measuring the load, the

program was modified to measure the DC voltage bias directly by momentarily

switching off the sine wave. Load corrections are then made by the step-

ping-motor to maintain a preset limit. This new load-control program

functions acceptably through a programmed temperature run except in the

region around the glass transition (T ). Immediately after the transi-

tion, the sample is often put into compression. So far, reliable measure-

ments of rubbery moduli on the order of IOMPa have been obtained only

occasionally.

While monitoring the load signal (P) with an oscilliscope, a problem

was evident in the switching of the signal. The value of the load was

intermittently recorded as zero. Since tension is a function of load,

when zero loads are recorded the rheovibron reacts by making drastic changes,

in sample length resulting in incorrect modulus and phase angle measure-

ent This problem appears to have been corrected by the replacement of

a relay-readback board in the multiprogrammer.



Another problem has bcen the determination of optimum settings of

the phase controls on the lock-in analyzer. After some experimentation

it was determined that the in-phase and quadrature readings should be set

approximately equal in magnitude and with the same sign (positive or neg-

ative) using the reference angle potentiometer and quadrant selector of

the lock-in analyzer. Use of these settings appears to reduce the time

required for the signal to stabilize and facilitates ranging of the sig-

nals. The ranging subroutine has also been rewritten by IMASS to allev-

iate a problem with signal saturation that was occurring when the in-phase

and quadrature components of the signal became unbalanced.

Performance. Figures 3 and 4 compare data from two different runs at

110 Hz on a methacrylate-butadiene-styrene (MBS) rubber-modified PVC in

the as-received condition (PVC M =0.95xlO-5; MBS, 10 phr). A previous

paper by this group contains detailed characterization of the PVC (10).

The sampleswere of similiar cross-sectional area and length (see Table

1); the test run using an oscillating displacement, Al, of 2.5xlO- 3cm

(i.e., at =01.05%strain). Great care was taken with sample mounting and

alignment. Over the temperature range from -115 C to +1000C, values of

the storage modulus (E') obtained in the two tests agreed within less

than 5%. Below -75 C (corresponding to tan 6 S0.02) significant scatter

is evident in the loss modulus (E") and tan 6, and the slopes differed

considerably, so that the value of tan 6 at -1000C is "-40% less in Figure

4 than in Figure 3.(The shapes of the E" and tan 6 curves in Figure 4 are

in fact atypical.) Considerable scatter has also been seen at low values

of tan 6 with the Autovibron DDV-II-C (11). Note, however, that the peak

for the MBS phase is clearly evident at "-60 0C. While dnta for specimen

A (Fig. 3) could be taken up to N1400C, it was not possible to exceed

111 ,=_ -- -i -- ] ,.



"1000C with specimen B, due to excessive specimen deformation. Values

of the glass transition temperature (T ) and complex modulus (E*) are

reported in Table 1.

Figures 5,6 compare data obtained by Matsuo (12) and by us using

manually operated model DDV-II Rheovibrons with data obtained on an auto-

mated DDV-III Rheovibron. Values obtained by Matsuo (12) and by us

using the manual DDV-II appear comparable. The shapes of the curves are

similar and differences in E' and T are probably the result of differ-g

ent samples and operators. Figure 6 shows data obtained in our laboratory

using an Autovibron DDV-III-C and a manual DDV-II. The E' values from

the DDV-II have been corrected using the K-correction factor outlined

in the Rheovibron instruction manual (2). The data from the DDV-III-C

are uncorrected for instrument compliance. The values obtained agree well

except in the T region where the temperature control of the manual DDV-
g

II is suspect. The values of E* at 00 C (%2.9 GPa) using the DDV-III-C

ib very close to the corresponding value found by Kenyon et. al. using

their automated Rheovibron model DDV-II(§).

Figure 7 illustrates data for two different specimens of the same

material obtained with an automated Rheovibron DDV-II. The two samples

have almost identical length, width and thickness (see Table 1). Both

samples were machined in the same manner and run by the same operator

with the same operating conditions. The initial oscillating displace-

ment, Al, was 7.9x10-4cm (i.e.zO.01% strain) in both cases. E* values

agree to within 9% at -1000 C and are less than 6% different at 40°C. In

the Tg region E', E" and Tan 6 are virtually identical. The two samples

do not, however have the same E" and tan 6 in the region from -1000 C to



+50°C. For example, tan delta readings of 0.033 and 0.056 were taken at

-250 C for the two sample-. These types of differences are as yet unexplained

and suggest caution should be employed when analyzing data.

A comparison of data from the two automated units (Table I and Figures

3,4 and 7) reveals that the modulus of similar PVC samples is almost two

times higher when measured on the automated DDV-III than on the automated

DDV-II. A recent publication (9) addresses error analysis for the manual

DDV-II and the analysis should be extended to the automated unit. Errors

of up to 50% have been reported (9) and have been attributed to the instru-

ments compliance, sample yielding and slipping in the clamps, sample

aligrnment the instruments inertia, variable sample sizes, and structural

changes in the sample during testing. Each of these problems should be

addressed using the automated unit before a thorough understanding of the

unit will be possible and true material properties can be measured with

full confidence.

Studies of the effects of thermal history and frequency on PVC and

MBS-modified PVC are under way. Preliminary results obtained on a quenched

PVC (Mw = 2x105 ; 14 phr MBS; quenched from 110 0 C in ice) are shown in

Figure 8 with respect to an as-received sample. The results show an in-

crease in damping between TB and T in the quenched sample similar to the

results of Struick (13); Figure 9 shows the same PVC run at 35 Hz. Note

that the MBS T is clearly shown in both but the damping between 50C

and +50°C is slightly lower for the 35 Hz sample. The glass-transition

temperature (Tg) of the PVC has shifted approximately 3°C. (See Table

1 for data).

Figures 10 and 11 show frequency data for a lower molecular weight

PVC (Mw 7x0 4 ; 14 phr MBS) that has been quenched. An effect of fre-

quency is not evident in the damping behavior between -50°C and +50'C of

9



these two samples. Data in Figure 11 also shows the effects of vibrat>_u

and resonances on the data. At T = -100 C, the scatter in E" and tan

6 was caused by lateral vibration of the sample, clamps and rods. This

problem has also been seen by others and is discussed in a recent pub-

lication (9).

Figure 12 displays data for two samples that were quenched in ice

from 1100 C and then annealed at 650 C for a period of 7 days or 35 days.

The damping between 0 C and 500C had clearly been effected by the aging

process in a manner similar to data presented by Struick (13). (The

general behavior of a non-aged quenched sample can be seen in Figure 8

and used for a qualitative comparison.) The difference in the magnitude

of damping from -1500 C to 750C is at this point unexplained.

Studies of the effects of frequency and water content on the dynamic

spectra and fatigue of various reinforced polymers (14) are also in pro-

gress. Typical best fits for the dynamic spectra for specimens of a

mineral-reinforced nylon are shown in Figures 13-16, inclusive. Three

frequencies (3.5, 11, and 110 Hz) and five water contents (dry, 0.6, 1.3,

2.8, and 4.8%) were studied; the data show the trends expected with re-

spect to frequency and water content. It may be noted that the non-

automated Rheovibron is not easily used at frequencies <110 Hz. Apparent

activation energies of the principal relaxation processes have also been

estimated to be: 68kJ/mole (16 kcal/mole) for the 0 relaxation, and

l60kJ/mole (39 kcal/mole) for the a transition. The curves of the fre-

quencies of the maxima in E" are almost coincident with those presented

by McCrum et al. (15) for unmodified nylon 66.

10



Conclusions and Recommendations

Several conclusions and recommendations are in order:

1. Although many problems have been encountered, the Autovibron

(DDV-IIIC) does show promise for the convenient determination of dynamic

spectra of a variety of standard and multi-phase polymer systems at

frequencies from 3.5 to 110 Hz.

2. Further work is needed on methods for clamping and alignment and

the adjustment of tension at T > T .g

3. A thorough analysis of errors resulting from instrument com-

pliance, sample yielding and slipping in the clamps, variable sample

sizes, and instrument inertia is needed in light of the recent work with

the manual Rheovibron(9).
1

4. Further documentation from the manufacturer is in order.
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Figure Captions

Figure 1. Comparison of the correct sample size versus modulus for the
DDV-II(-) and DDV-III (---)Rheovibrons.

Figure 2. Block diagram of Autovibron

Figure 3. Dynamic mechanical spectra (110 Hz) of MBS-modified PVC using

a DDV-III-C Rheovibron.

Figure 4. Dynamic mechanical spectra (110 Hz) of MBS-modified PVC using
a DDV-III-C Rheovibron.

Figure 5. Dynamic mechanical spectra of PVC (ii0 Hz) using a manual DDV-

II Rheovibron (ref. 12).

Figure 6. Comparison of dynamic mechanical spectra of PVC (M = 2x10 5)
wusing model DDV-III-C ( and manual DDV-II.

Figure 7. Dynamic mechanical spectra of two replicate MNS-modified PVC
samples using an automated DDV-II. (Mw = 2xi0 5 ; 14 phr MBS).

Figure 8. Dynamic mechanical spectra using an automated DDV-II of MBS-
modified PVC (Mw = 2xi0 5 ; 14 phr MBS) as received -- ),quenched (---).

Figure 9. Dynamic mechanical spectra of an MBS-modified PVC (Mw = 2xi0 5;

14 phr MBS) run a 35 Hz using an automated DDV-II.

Figure 10. Dynamic mechanical spectra of a quenched MBS-modified PVC (Mw =

7x10W , 14 phr MBS) run at 110 Hz using an automated DDV-II.

Figure 11. Dynamic mechanical spectra of a quenched MBS-modified PVC (M =

7xi0 4 ; 14 phr MBS) run a 35 Hz using an automated DDV-II.

Figure 12. Dynamic mechanical spectra of MBS-modified PVC (Mw = 2xi0 5 ;
Ophr MBS) after 7 day (--- ) and 35 day (.-) treatment at 65 C
using an automated DDV-II at 110 Hz.

Figure 13. Effect of frequency on dynamic mechanical spectra (14) of Min-
Ion 12T using autovibron DDV-III-C; 110 Hz (-*-) and 11 Hz (-o-).

Figure 14. Effect of frequency on dynamic mechanical spectra (14) of Mn-

lon 12T using autovibron DDV-III-C; 110 Hz (-*-) and 3.5 Hz (-3-).

Figure 15. Effect of water on dynamic mechanical spectra (14) of Minion
12T using an autovibron DDV-lII-C; 0.6% Hzo (x) and 2.8% H2 0(0).

Figure 16. Effect of water on dynamic mechanical spectra (14) of Minlon
12T using an autovibron DDV-III-C; 1.3% H 20(x) and 4.8% it2 0(o)
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Figure. 4
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SAMPLE PVC 135-1
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Figre. 7

SAMPLE PVC 135-4
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Figure. 9

SAMPLE PVC 135-4
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SAMPLE Minion 12T
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Figur-e. 14

SAMPLE Minion 12T

FREQUENCY 3.5/110 Hz
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Figure. 15

SAMPLE Minion 12T
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